If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2-18n+70=0
a = 1; b = -18; c = +70;
Δ = b2-4ac
Δ = -182-4·1·70
Δ = 44
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{44}=\sqrt{4*11}=\sqrt{4}*\sqrt{11}=2\sqrt{11}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{11}}{2*1}=\frac{18-2\sqrt{11}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{11}}{2*1}=\frac{18+2\sqrt{11}}{2} $
| w2=10 | | 8(2c-4)=-26 | | 1-6x-4x=21 | | -7/8=15/9x | | 5x−4x=2x+6 | | 10c−7c−1=17 | | -5x=49 | | 2•a/3=3/4 | | 5x^+9=3x+7 | | -10(s+2)=-105 | | 6x-1=x+6 | | 3+10x=0 | | 87=-5n-4(n-6) | | 5x^+3=3x+7 | | 3t-15=3 | | 50 -x=89 | | -10(s+2)=6 | | 910=56v | | ¼v=5 | | 7x-4=-277 | | 43y=36 | | -6w-28=-4(w+2) | | 8(1+8r)+5=269 | | 3a*3a*3a*4a^2=0 | | 7a+3)+(-a-5)=-16 | | 4g-1=3 | | 257=p-27 | | {1/(4x-4)}=2 | | 32b^2+10b-48=0 | | 10q+30=35 | | 43y=36 | | q10+30=35 |